Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37588000

RESUMO

The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hc∼1.5T.

3.
J Phys Condens Matter ; 32(37): 374011, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554874

RESUMO

Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai et al 1968 Phys. Rev. 167 510]. Despite identifying two magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below T N using conventional pseudo-bosonic approaches, instead achieving only qualitative agreement. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-T c cuprate superconductors [Bednorz and Muller 1986 Z. Phys. B 64 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him at the start of his career. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue Mg0.97Co0.03O. These experiments would prove instrumental in the determination of both single-ion [Cowley et al 2013 Phys. Rev. B 88 205117] and cooperative magnetic parameters [Sarte et al 2018 Phys. Rev. B 98 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte et al 2019 Phys. Rev. B 100 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.

4.
J Phys Condens Matter ; 30(9): 095601, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29431150

RESUMO

The fluorine-doped rare-earth iron oxypnictide series SmFeAsO1-x F x (0 [Formula: see text] 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies (Margadonna et al 2009 Phys. Rev. B. 79 014503), the parent compound SmFeAsO exhibits a tetragonal-to-orthorhombic structural distortion at [Formula: see text] = 130 K which is rapidly suppressed by [Formula: see text] 0.10 deep within the superconducting dome. The change in unit cell symmetry is followed by a previously unreported magnetoelastic distortion at 120 K. The temperature dependence of the thermal expansion coefficient [Formula: see text] reveals a rich phase diagram for SmFeAsO: (i) a global minimum at 125 K corresponds to the opening of a spin-density wave instability as measured by pump-probe femtosecond spectroscopy (Mertelj et al 2010 Phys. Rev. B 81 224504) whilst (ii) a global maximum at 110 K corresponds to magnetic ordering of the Sm and Fe sublattices as measured by magnetic x-ray scattering (Nandi et al 2011 Phys. Rev. B 84 055419). At much lower temperatures than [Formula: see text], SmFeAsO exhibits a significant negative thermal expansion on the order of -40 ppm · K-1 in contrast to the behaviour of other rare-earth oxypnictides such as PrFeAsO (Kimber et al 2008 Phys. Rev. B 78 140503) and the actinide oxypnictide NpFeAsO (Klimczuk et al 2012 Phys. Rev. B 85 174506) where the onset of [Formula: see text] 0 only appears in the vicinity of magnetic ordering. Correlating this feature with the temperature and doping dependence of the resistivity and the unit cell parameters, we interpret the negative thermal expansion as being indicative of the possible condensation of itinerant electrons accompanying the opening of a SDW gap, consistent with transport measurements (Tropeano et al 2009 Supercond. Sci. Technol. 22 034004).

5.
J Phys Condens Matter ; 29(45): 45LT01, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29049030

RESUMO

Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids (Dirac 1931 Proc. R. Soc. A 133 60). Despite decades of searching, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials (Castelnovo et al 2008 Nature 326 411). Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text]. These excitations are well-described by a simple model of monopole pairs bound by a linear potential (Coldea et al Science 327 177) with an effective tension of 0.642(8) K [Formula: see text] at 1.65 K. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text].

6.
Phys Rev Lett ; 113(26): 267205, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615381

RESUMO

After nearly 20 years of study, the origin of the spin-liquid state in Tb2Ti2O7 remains a challenge for experimentalists and theorists alike. To improve our understanding of the exotic magnetism in Tb2Ti2O7, we synthesize a chemical pressure analog: Tb2Ge2O7. Substitution of titanium by germanium results in a lattice contraction and enhanced exchange interactions. We characterize the magnetic ground state of Tb2Ge2O7 with specific heat, ac and dc magnetic susceptibility, and polarized neutron scattering measurements. Akin to Tb2Ti2O7, there is no long-range order in Tb2Ge2O7 down to 20 mK. The Weiss temperature of -19.2(1) K, which is more negative than that of Tb2Ti2O7, supports the picture of stronger antiferromagnetic exchange. Polarized neutron scattering of Tb2Ge2O7 reveals that liquidlike correlations dominate in this system at 3.5 K. However, below 1 K, the liquidlike correlations give way to intense short-range ferromagnetic correlations with a length scale similar to the Tb-Tb nearest neighbor distance. Despite stronger antiferromagnetic exchange, the ground state of Tb2Ge2O7 has ferromagnetic character, in stark contrast to the pressure-induced antiferromagnetic order observed in Tb2Ti2O7.

7.
J Phys Condens Matter ; 23(38): 382201, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21891830

RESUMO

The low temperature behaviour of powder Er2Sn2O7 samples has been studied by magnetic susceptibility, heat capacity, and neutron scattering experiments. We report here the absence of magnetic ordering down to 100 mK. Anomalies in the heat capacity can be accounted for through an analysis of the crystal field spectrum observed by inelastic neutron scattering spectroscopy. These new measurements on Er2Sn2O7 suggest a new lower bound for the frustration index of f = |Θ(CW)|/T(N) = 14/0.1 = 140, placing this compound into a highly frustrated regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...